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Chapter 5

Second Session Contents:

1) Von Neumann Method

2) Matrix Method for Stability Analysis 

3) Crank Nicolson Implicit Method

4) Neumann Boundary Condition

Stability 
Finite Difference Method
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Von Neumann Method
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John von Neumann

Born: December 28, 1903,

Budapest, Hungary

Died: February 8, 1957,

Washington, D.C., United States

Education: ETH Zurich

John von Neumann was a Hungarian and later American pure

and applied mathematician, physicist, inventor, polymath, and

polyglot. He made major contributions to a number of fields,

including mathematics, physics, economics, computing, and

statistics.
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Using Fourier series for u function

FTCS method

Which

Von Neumann Method
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Von Neumann Method

By dividing on 

Which

Trigonometric equations

Amplification factor:

In this example:
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Von Neumann Method

Stability condition:

For the last example:

The important steps of Von Neumann analysis:

- The solution of finite difference problem can be assume as the combination of Fourier modes

- Using                   in finite difference equation and finding  

- Von Neumann stability condition:                                     for all modes
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Von Neumann Method

Applications and limitations of Von Neumann method

- Can be used only for linear equations

- The effect of boundary conditions are not considered in stability analysis

- For PDEs discretization which used two time steps, the stability conditions can be     
determined by:

a) if g is a real number : 

b) If g is a complex number:  

- For PDEs discretization which used three time steps, the Amplification factor is a 
matrix. for Eigenvalues of this matrix:

a) if is a real number : 

b) If is a complex number:  
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Von Neumann Method

-Can be used for several dimensional equations
-Can be used for system of linear equations ( in this situation, we should consider the  
maximum amount of eigenvalues as stability criterion)
-Using graphical solutions for stability analysis (in the situations that calculating the 
Amplification factor is hard )
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Von Neumann Method

Example 1: Applying Von Neumann criteria for BTCS method

PDE:
BTCS method
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Von Neumann Method

Example 1: Applying Von Neumann criteria for BTCS method
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Von Neumann Method

Example 2: Applying Von Neumann criteria for CTCS method

PDE:
CTCS method
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Von Neumann Method

Example 2: Applying Von Neumann criteria for CTCS method
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Von Neumann Method

Example 3: Applying Von Neumann criteria for Dufort Frankel method

PDE:
Dufort Frankel
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Von Neumann Method

Example 3: Applying Von Neumann criteria for Dufort Frankel method

For small amount of ∆𝑇:

For large amount of ∆𝑇:

which always is less than one
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Von Neumann method

Example 3: Applying Von Neumann criteria for Dufort Frankel method
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Matrix Method for Stability Analysis 

Using explicit  finite difference method:
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Or                       which      is column matrix and A is                              matrix

Which                                                 is initial value vector

Matrix Method for Stability Analysis 
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If error is defined at each point along x axis at t=0

Replacing       by     

And …

Error vector can be defined as:

Therefore:

Matrix Method for Stability Analysis 
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The error propagation formula is the same as u

 Based on superposition principle in linear problems, we can 

only study the behavior of one error

 A finite-difference method is stable if =limited values
𝑛 → ∞

 It was shown that matrix A has N-1 eigenvector. Therefore, the 

error vector can be determined by N-1 eigenvector as follow

Matrix Method for Stability Analysis 
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Matrix Method for Stability Analysis 
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Matrix Method for Stability Analysis 
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Example

𝜆 >1 The method is not stable 

for any r
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Stability Analysis of Crank Nicolson Method
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Stability Analysis of Crank Nicolson Method
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𝜆𝑘 <1 The method is unconditionally stable 

for any r

Stability Analysis of Crank Nicolson Method
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Example
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Example

Appendix

unconditionally stable 
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h1, h2, v1, v2 = const

h1, h2 >0

Boundary condition

Stability Analysis of Neumann Boundary Condition
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By omitting          and 

Stability Analysis of Neumann Boundary Condition
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By omitting          and 

This matrix determines the error propagation

Stability Analysis of Neumann Boundary Condition
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Based on Brauer Theorem

Stability Analysis of Neumann Boundary Condition
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Based on Brauer Theorem

Minimum value

Stability Analysis of Neumann Boundary Condition
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unconditionally stable 

Stability Analysis of Neumann Boundary Condition


